

BladeCam ½" CMOS Beam Profiling Camera, Ultra Compact, 190 – 1610* nm

With pixel size to 3.2 µm the high resolution and highly compact BladeCam[™] beam profilers have a thickness of only 0.65" (16.5 mm) for insertion into tight optical trains and OEM applications.

S-BC-XHR High Resolution beam profiling Image of a 675 nm beam, 50 μm diameter The advantage of 3.2 μm square pixels is clearly seen

System Features

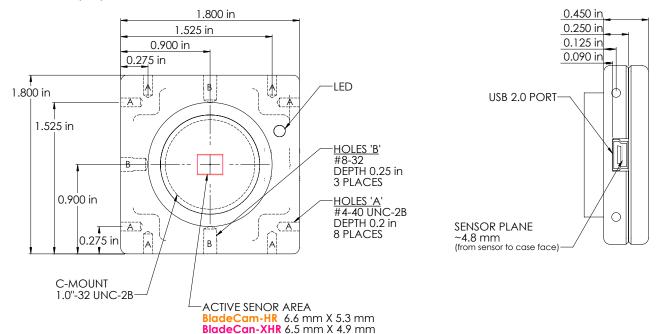
- 355 to 1150 nm, CMOS detector, 190 -1610 nm options
- 3.2/1.3 MPixel, 2048 x 1536 or 1280 x 1024 pixels, ½" active area
- 3.2/ 5.2 μm pixels
- Port-powered USB 2.0; 3 m cable, no power brick
- HyperCal[™] Dynamic Noise and Baseline Correction software
- C-Mounted filters ND 1,2&4 with camera, 0.5, 1,2,3,4,5 options
- Multiple Cameras 1-8
- ISO 11146 compliant
- RoHS, WEE and CE Certified
- 1000:1 Signal to RMS Noise
- Rolling shutter (not suitable for pulsed lasers)
- Electronic auto-shutter, 162 μs to 1 sec 38dB
- 10-bit ADC
- Field-replaceable image sensors
- Window-free sensors standard for no fringing
- M² option beam propagation analysis, divergence, focus
- 50 mm and 200 mm stage lengths for a wide range of Raleigh ranges

The BladeCamTM is paired with DataRay's fullfeatured, highly customizable, user-centric software which has no license fees, unlimited installations, and free software updates. It is perfect for applications including: CW laser profiling; field servicing of laser systems; optical assembly; instrument alignment; beam wander and logging; R&D; OEM integration; quality control; and M² measurement with available M2DU stage.

BladeCam-XHR/HR 1.8 x .1.8 x 0.65" (with ND filter) 45.72 x 45.72 x 16.5 mm

Applications

- CW & High Rep. Rate Pulsed laser profiling
- Field servicing of lasers and laser-based systems
- Optical assembly & instrument alignment
- Beam wander & logging
- M² Measurements


Additional Software Features

- XY profiles and centroids
- Linear and logarithmic displays
- Gaussian and Top Hat least squares fits
- Ellipse Angle, Major, Minor, Mean Diameters
- ISO 11146 compliant

- Background capture and subtraction
- Image & Intensity Zoom
- Linear and area filters
- Image Averaging, 1 to continuous
- Proprietary HyperCal[™] Dynamic Noise and Baseline Correction

BladeCam Series Model Specifications:								
BladeCam™	BC-XHR/HR-UV	BC-XHR/HR	BC-XHR/HR -1310	BC-HR-TEL				
Pixel Count &	3.2/ 1.3 M Pixel	3.2/ 1.3 M Pixel	3.2/ 1.3 M Pixel	3.2/ 1.3 M Pixel				
H x V:	2048 x 1536 /1280 x1024	2048 x 1536 /1280 x1024	2048 x 1536 /1280 x1024	264 x 212*				
Sensor image area (mm):	6.5 x 4.9 / 6.6 x 5.3	6.5 x 4.9 / 6.6 x 5.3	6.5 x 4.9 / 6.6 x 5.3	6.6 x 5.3				
Pixel dimension (µm):	3.2 ² / x 5.2 ²	3.2 ² / x 5.2 ²	3.2 ² / x 5.2 ²	~25 x 25*				
Min. beam (10 pixels):	32 / 52 μm	32 / 52 μm	32 / 52 μm	250 μm				
Wavelength Range:	190-1100 nm	355-1100 nm	355-1350 nm	1480-1610 nm				
Shutter type:	Rolling	Rolling	Rolling	Rolling				
Max Frame rate:	> 10 Hz	> 10 Hz	> 10 Hz	> 10 Hz				
Max. 'every pulse' PRR:	=	Not suitable for pulse capture	=	=				
Single pulse capture PRR:	=	Not suitable for pulse capture	=	=				
Signal to RMS Noise:	1,000:1 (30/60 dB)	1,000:1 (30/60* dB)	1,000:1 (30/60* dB)	1,000:1 (30/60* dB)				
Electronic Shutter	162 µs to 1s	162 µs to 1s	162 µs to 1s	162 µs to 1s				
Dynamic Range:	38 dB	38 dB	38 dB	38 dB				
ADC:	10 bit	10 bit	10 bit	10 bit				
Interface:	USB 2.0	USB 2.0	USB 2.0	USB 2.0				

* Effective size due to phosphor

Founded in 1988, DataRay is the worldwide leader in beam profiling and analysis, delivering innovative, high-quality, affordable, and reliable instrumentation to the photonics industry. Product lines include beam profiling cameras (163 nm to 16 µm, model-dependent), and scanning slit beam profilers (190 nm to 3.9 µm, model-dependent).

S-BC-XHR-1310: High Resolution beam profiling to 1350 nm.

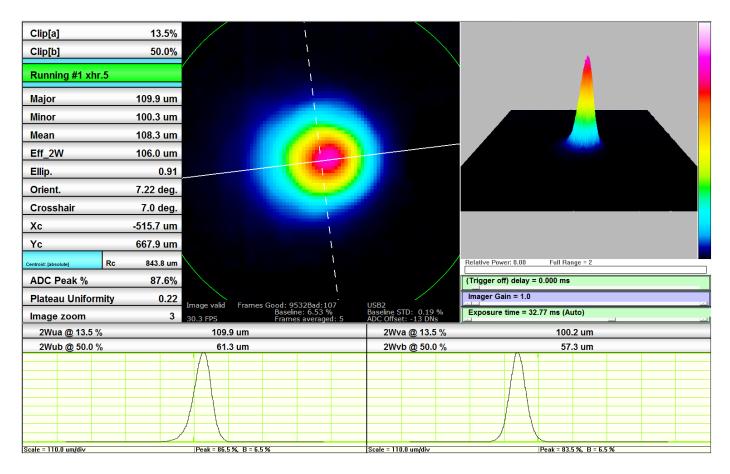
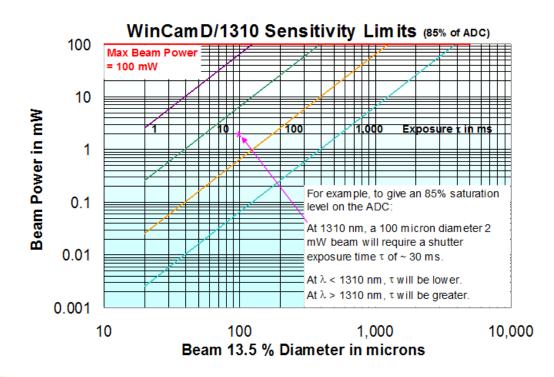
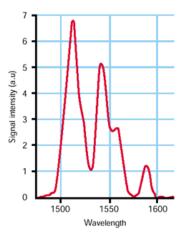



Image of a 1310 nm beam, 100 µm diameter, 1.5 mW. [43 ms Shutter, no ND filter]


Tel: 0755-84870203 www.highlightoptics.com E-mail: sales@highlightoptics.com

S-BC-HR-TEL: Economical Telecom beam profiling, 1480 to 1610 nm

Olim In1	40.5%				
Clip[a]	13.5%				
Clip[b]	50.0%				
1550nm_1.8mW_10	00um diam.w			L. MAN	
Major	1116.3 um	1			
Minor	1088.5 um				
Mean	1111.6 um	A CONTRACT			
Eff_2W	1040.9 um	A State of			
Ellip.	0.98				
Orient.	0.01 deg.	and the second			
Crosshair	0.0 deg.	and the second sec			
Xc	-233.6 um	de la companya de la			
Yc	-2086.8 um				
Centroid: [absolute]	2099.9 um			Relative Power: 0.00 Full Range = 2	
ADC Peak %	82.5%				
Plateau Uniformity	0.12 Jacob volid	Eramos Cood: 0Bad:0			
Image zoom	1 Hypercal engage 9.3 FPS	Frames Good: 0Bad:0 jed. Baseline: 5.59 % Frames averaged: 5	USB2 Baseline STD: 0.65 % ADC Offset: -407 DNs		
2Wua @ 13.5 %	1116.3	um	2Wva @ 13.5 %	1088.5 um	
2Wub @ 50.0 %	724.5	um	2Wvb @ 50.0 %	682.7 um	
		~			
Scale = 400.0 um/div		B = 5.6 %	Scale = 400.0 um/div	Peak = 71.9 %, B = 5.6 %	L

S-BC-HR-TEL for Telecom C & L bands

- 1480 to 1610 nm, IR to visible conversion phosphor on Silicon CMOS
- \approx 25 µm FWHM point spread function due to phosphor
- ~20 μW to 100 mW, for 1 mm diam. @1550 nm. (With 0.02% transmission (1550 nm) ND filter e.g. 10 ms exposure on 1 mW, 1 mm diameter beam at 1550 nm.
- Gamma (γ) correction is included in the software.
- Same Ultra-compact case 45 x 45 x 16.5 mm
- USB 2.0
- Comes with 3 ND filters and a LP 1290 blocking filter for best noise reduction performance
- Port powered
- Full featured DataRay software

