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A B S T R A C T

Urban trees exhibit a wide range of ecosystem services that have long been unveiled and increasingly reported. 
The ability to map tree species and analyze tree health conditions would become vividly essential. Remote 
sensing techniques, especially hyperspectral imaging, are being evolved for species identification and vegetation 
monitoring from spectral reponse patterns. In this study, a hyperspectral library for urban tree species in Hong 
Kong was established comprising 75 urban trees belonging to 19 species. 450 bi-monthly images were acquired 
by a terrestrial hyperspectral camera (SPECIM-IQ) from November 2018 to October 2019. A Deep Neural 
Network classification model was developed to identify tree species from the hyperspectral imagery with an 
overall accuracy ranging from 85% to 96% among different seasons. Representative spectral reflectance curves of 
healthy and unhealthy conditions for each species were extracted and analyzed. The hyperspectral phenology 
models were developed to achieve high accuracy and optimization of data acquisition. The bi-monthly canopy 
signatures and vegetation indices revealed different seasonality patterns of evergreen and deciduous species in 
Hong Kong. We explored the utility of terrestrial hyperspectral remote sensing and Deep Neural Network for 
urban tree species identification and characterizing. This provides a unique baseline to understand hyperspectral 
characteristics and seasonality of urban tree species in Hong Kong that can also contribute to hyperspectral 
imaging and database development elsewhere in the world.   

1. Introduction

Urban trees benefit our environment and human inhabitants in
multi-facet dimensions, such as reducing the urban heat island effect, 
enhancing biodiverse habitat, increasing the aesthetic value of the street 
view and relieving mental distress. It has long been unveiled and 
increasingly reported by numerous researchers (Alonzo et al., 2014; 
Bolund and Hunhammar, 1999; Escobedo et al., 2011; Escobedo and 
Nowak, 2009; Gómez-Baggethun et al., 2013; Liu et al., 2017; Lyytimäki 
et al., 2008; Nowak et al., 2008; Tratalos et al., 2007). Yet, the benefit of 
services may vary according to tree species, structures, and locational 

contexts, which represent essential criteria to measure the service 
quality of urban trees, thereby maintaining the ecosystem sustainably at 
a vibrant level (Escobedo et al., 2011). As such, the ability to map tree 
species and analyze tree health conditions would become vividly 
essential (Degerickx et al., 2018; Leckie et al., 2005). However, tree 
information collection and periodic updates against the biophysical 
conditions of tree data is essential to keep track of the tree health status 
which in turn, poses challenges to the current tree health monitoring and 
species identification using conventional visual tree assessment, along-
side the rise of many associated costs, including time-consuming, la-
bour-intensive, costly fieldworks, and sometimes, unable to provide 
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entire coverage within the heterogeneous urban environment (Alonzo 
et al., 2014). 

Remote sensing techniques can map urban trees to monitor complex 
urban environment changes effectively. A dozen of research showed that 
the hyperspectral data obtained from space (Clark, 2020; Ferreira et al., 
2019; Ghosh et al., 2012; Liu et al., 2017; Zhang et al., 2013), airborne 
(Ben-Dor et al., 2002; Dadon et al., 2019; Lin et al., 2018; Osco et al., 
2020; Schiefer et al., 2020; Wu et al., 2021; Yan et al., 2020; Zarco- 
Tejada et al., 2000; Zarco-Tejada et al., 2001) and ground-based plat-
forms (Cho and Skidmore, 2006; Cochrane, 2000; Delegido et al., 2014; 
Gong et al., 1997; Jensen et al., 2012). Kothari et al. (2018) have been 
widely used for species identification and vegetation monitoring. 
Furthermore, detecting changes in spectral response patterns can help to 
identify variability in plant health indicators (Zhang et al., 2020), such 
as leaf area index (Halme et al., 2019), the amount of live and senesced 
biomass (Laurin et al., 2014), moisture content (Cotrozzi et al., 2017; 
Shen et al., 2021), plant pigment contents (e.g. chlorophylls and an-
thocyanins) (Cho and Skidmore, 2006; Delegido, 2014; Thenkabail 
et al., 2018), canopy nitrogen concentration (Townsend et al., 2003), 
non-structural carbohydrates (Asner and Martin, 2015); tree species 
diversity and distribution mapping (Paz-Kagan et al., 2017), functional 
and biological diversity (Asner et al., 2014). Nevertheless, retrieval ac-
curacies from airborne and spaceborne imagery are greatly influenced 
by the complex atmospheric conditions as well as highly mixed urban 
landscapes (Yan et al., 2020). Although various non-imaging and 
hyperspectral imaging sensors are available, the measuring process and 
the handling of most of these sensors are rather complex (Behmann 
et al., 2018). Airborne acquisition methods rely on whisk or push broom 
systems. The spatial referencing is assisted with an inertial measurement 
unit and global navigation satellite systems. And light-weight platforms, 
like UAVs, have the advantage of lower flight altitudes but do not pro-
vide such high-quality correction signals (Aasen et al., 2015; Rossini 
et al., 2015). Therefore, researchers adopted in-situ or ground-based 
spectroscopy measurements to achieve high spatial resolution plus the 
advantage to minimize the complex atmospheric correction for the im-
ages (Katkovsky et al., 2018). 

Several spectral libraries consisted of vegetation information have 
been developed which are available online, for instance, the Global 
Hyperspectral Imaging Spectral-library of Agricultural (GHISA) pro-
vides a hyperspectral library of the five major crops (e.g., winter wheat, 
rice, corn, soybeans, and cotton) for the Conterminous United States 
(Thenkabail and Aneece, 2019), the ASTER Spectral Library established 
by the National Aeronautics and Space Administration (NASA)’s Jet 
Propulsion Laboratory (JPL) (Baldridge et al., 2009), the SPECCHIO 
Spectral Library maintained by the Remote Sensing Laboratories in the 
Department of Geography at the University of Zurich (Bojinski et al., 
2003); the Vegetation Spectral Library developed by the Systems Ecol-
ogy Laboratory at the University of Texas (Goswami, 2011; Goswami 
and Matharasi, 2015); the Spectranomics (Asner and Martin, 2016); and 
the Ecological Spectral Information System (EcoSIS, 2014; Kothari et al., 
2018). Although the current libraries have wide coverage of spectral 
information, the spectral signatures of different tree types are of a 
limited amount; whilst many native tree species in the subtropical and 
tropical zones, like Celtis senensis and Macaranga tanarius var. tomentosa, 
are rather unlikely to be found in any of these libraries. Located in the 
subtropical zone with a high diversity of tree species, Hong Kong is well- 
known for its unique landscape features where most of the trees are 
grown in an intense urban environment along with hilly topography, 
compact skyscraper buildings and a high population density. Therefore, 
this study with a focus on the abundant tree species in Hong Kong 
significantly contributes the hyperspectral imaging and database 
development in the world to bridge the gap of studying plant species 
using hyperspectral data. 

This study built a hyperspectral library for urban tree species in Hong 
Kong, comprising of 19 species, six families, 75 urban trees, and 450 
images, acquired by a terrestrial hyperspectral camera from November 

2018 to October 2019 in different seasons. A Deep Neural Network is 
developed to identify tree species and the hyperspectral phenology 
models are developed to achieve high accuracy and optimization of data 
acquisition. The organization of this paper is as follows: in Section 2, the 
study area, datasets and the adapted methodology are presented. Section 
3 presents the results and discussions. Section 4 presents the conclusions 
and possible future works. 

2. Data and methods 

2.1. Data 

2.1.1. Target tree selection 
The selection criteria of targeted trees include but not limited to the 

tree species, tree health condition, types of defects, tree height, size of a 
tree canopy, proximity to the road, traffic flow at the nearby highway, 
and spatial distribution of the samples. Highways trees are nurtured to 
stabilize slopes, establish a green backdrop to the highway system, and 
enhance the local ecological habitats in the urban area selected for this 
study. The selected trees (Table 1) were located in 12 different sites in 
Hong Kong’s urban landscape (Figure S1). Among all of these selected 
trees, 55 trees were healthy, and 20 trees were identified as unhealthy in 
the database provided by the Hong Kong Government. 

2.1.2. Image acquisition plan 
In-situ measurements were adopted to retrieve high spatial resolu-

tion and to minimize the atmospheric disturbance. A novel hyper-
spectral camera, named SPECIM IQ (Model No.: 0604675, Oulu, 
Finland), was procured to acquire in-field hyperspectral images. The 
SPECIM IQ can capture a full hyperspectral image without external 
movement and the slight temporal delay of capturing different parts 
(spatial or spectral) of the image. The camera acquires hyperspectral 
imagery in 204 narrow bands with a spectral resolution of 7 nm in 
Visible and Near Infra-Red wavelengths (400 - 1000 nm) of the elec-
tromagnetic spectrum approximately. The sampling interval is around 
2.94 nm, and the central wavelength of each band is given in supple-
mentary material Table 5S. The bandwidth can be binned by 2x (102 
bands) or 3x (68 bands). The camera provides a spatial sampling of 512 
by 512 pixels covered by a field of view of 31◦ by 31◦. An image acquired 
by the camera at a 1m distance from the target captures an area of 0.55 
m by 0.55 m and divides the target into the ground sampling unit of 1.07 
mm. It can capture a target from a minimum distance of 150 mm to an 
infinite distance. The camera weight is 1300 g with a portable size of 
207 mm (length) by 91 mm (width) by 125.5 mm (depth - without lens is 
74 mm). 

For maintaining the consistency of data acquisition under varying 
weather conditions and seasonal changes, the simultaneous method of 
White Reference is preferred for this study. The most critical parameter 
in field reflectance measurements is the irradiance changes due to at-
mospheric effects and variation in solar illumination. Since most 
reflectance measurements continue to be single Field of View (FOV) 
measurements, the time between the reference and the target mea-
surement should be minimized to eliminate the possible atmospheric- 
induced changes. This optimization is also required because the illu-
mination characteristics must be the same for the reference and target 
measurements. Any change in position of observer or illuminating ge-
ometry between a reference and a target scan introduces a bidirectional 
reflectance distribution function (BRDF) relating to the change of the 
signal. Besides, when using any field reflectance standard, the correction 
for the standard’s non-Lambertian behaviour must be taken into 
account. 

By incorporating any field standard ρλs, the reference measurement 
can be modified based on Eq. (1) as follows: 

ρ(λ)corr = Φλr,t1

ρλs

Φλi,t0
(1) 
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where ρ(λ)corr is the spectral reflectance corrected for non-Lambertian 
field reference, ρλs is the spectral reflectance factor of the field stan-
dard. Since in most cases, t0− t1 ∕= 0 with Δt < 15min, ρλs must be applied 
to Φλi before multiplying it with the reflected radiance. Quantification of 
atmospheric stability in selected wavelengths can be given using sun-
photometer measurements. The measurement time affects the irradiance 
since it is associated with varying optical transmittance. The Labsphere 
Spectralon panel is used as a reference in the field measurement for its 
near-perfect reflectance over 250–2500 nm region and thermal stability. 
Stratified random sampling is performed in the field measurements. 
When the observation height of the target is confined to two meters and 
FOV is about 2◦, the representative sample size is considered to be 30–40 
(Schaepman, 1998). 

The hyperspectral images of the 75 selected trees comprising 19 

species were acquired in six rounds, each round every two months, from 
November/December 2018 to October 2019. The Round 1 (R1) was 
carried in November-December 2018, followed by Round 2 (R2) in 
February 2019, Round 3 (R3) in April 2019, Round 4 (R4) in June 2019, 
Round 5 (R5) in August 2019 and Round 6 (R6) in October 2019. 

A detailed flow of step by step procedures to acquire and analyze 
hyperspectral images from the terrestrial hyperspectral camera is illus-
trated in Fig. 1. 

2.2. Methods 

2.2.1. Masking canopies and homogenous regions 
Most of the captured images included background areas and can-

opies of adjacent trees that were mandatory to be excluded before 
automatic computing of mean canopy signatures and the images’ 

Table 1 
Description of selected trees.  

No. Species Family No. of Healthy No. of Unhealthy Abbreviation 

1 Acacia auriculiformis Fabaceae 3 Inaccessible a.aur 
2 Acacia confusa Fabaceae 5 1 a.con 
3 Albizia lebbeck Fabaceae 3 Inaccessible a.leb 
4 Aleurites moluccana Euphorbiaceae 7 3 a.mol 
5 Bauhinia variegata Fabaceae 1 1 b.var 
6 Broussonetia papyrifera Moraceae 2 Inaccessible b.pap 
7 Casuarina equisetifolia Casuarinaceae 4 1 c.equ 
8 Celtis sinensis Cannabaceae 4 2 c.sin 
9 Cinnamomum camphora Lauraceae 3 1 c.cam 
10 Cinnamomum parthenoxylon Lauraceae 1 1 c.par 
11 Delonix regia Fabaceae 3 Inaccessible d.reg 
12 Ficus hispida Moraceae 4 Inaccessible f.his 
13 Ficus microcarpa Moraceae 2 1 f.mic 
14 Ficus variegata (var. chlorocarpa) Moraceae 3 Inaccessible f.var 
15 Ficus virens (var. sublanceolata) Moraceae 2 Inaccessible f.vir 
16 Litsea monopetala Lauraceae 1 Inaccessible l.mon 
17 Macaranga tanarius var. tomentosa Euphorbiaceae 2 6 m.tan 
18 Machilus chekiangensis Lauraceae 3 Inaccessible m.che 
19 Mallotus paniculatus Euphorbiaceae 2 3 m.pan  

Total 55 20   

Fig. 1. The flow diagram of the study. HKO refers to Hong Kong Observatory.  
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classification. Therefore, a masking procedure was applied to every 
image to mask out background areas, including roads, footpaths, 
buildings, and adjacent tree canopies, and retain homogenous canopy 
regions of the images acquired during different rounds of data collec-
tion. A few typified examples of the masking procedure are shown in 
Fig. 2. 

2.2.2. Unsupervised clustering of images 
A tree canopy is comprised of varying arrays of leaves – healthy, 

unhealthy, sunlit, shadowed, new, young, and mature leaves. Also, tree 
branches, trunk, and canopy shadow contribute to the accumulative 
reflectance. Therefore, prior to the classification of the hyperspectral 
images, an unsupervised k-means clustering algorithm was applied to all 
the images to group an image’s pixels into 6 clusters, indicating leaf 
conditions, tree trunk and branches, as well as to exclude canopy 
background and saturated pixels. As hyperspectral remote sensing im-
ages often appear as “synonyms spectrum” and “foreign body with the 
spectrum”, the same class may have different spectral features (Fig. 3). 

These clusters represent naturally similar regions by minimizing 
within-cluster variability (sum of the squared distance between each 
pixel) and maximizing cluster homogeneity. The clustering process 
starts with the analyst’s input for a number of required clusters, (n = 6), 
with other parameters to be located in the dataset. A set of ’n’ clusters 
are randomly created in the multidimensional feature space (with 204 
bands), and each pixel is allocated to the nearest class with a minimum 
distance between the cluster centroid. Later, these clusters are repeti-
tively re-clustered and updated based on the inclusion of new pixel until 
maximum spectral separability is obtained (and no new cluster forma-
tion is generated) based on the closest distance-to-centre decision rule 
(Im and Jensen, 2005). The unsupervised clusters require to be assigned 
an appropriate class, such as healthy, unhealthy, healthy shadowed, 
healthy sunlit, trunk or branches, background and saturated. A mean 
canopy signature was computed by excluding all the clusters or pixels 
labelled as non-vegetated, background or adjacent vegetation, and 
saturated. It was calculated for all the 75 trees in each round and a 
unified signature plot is created to understand changes in spectral 
response during a different part of the year. The combined plot of mean 
canopy signatures of each tree, acquired during different seasons 
(December, February, April, June, August, and October) indicates 
unique variations in spectral characteristics (see supplementary 

material section S7). 

2.2.3. Vegetation indices 
Remote sensing of vegetation monitoring generally relies on vege-

tation indices (VIs) which compare the reflectance of vegetation in 
multiple spectral regions (Nijland et al., 2014). The VIs derived from RS 
provides efficient and straightforward means for qualitative and quan-
titative mapping of vegetation cover, health, leaf chlorophyll content, 
leaf area, canopy cover, and structure (Xue and Su, 2017). The 
Normalized Difference Vegetation Index (NDVI) is the most widely 
applicable VI to monitor vegetation’s greenness or health condition. It is 
derived from converse spectral response patterns of vegetation in the 
NIR and Red portion (Equation (2)) of the solar electromagnetic spec-
trum (Maselli, 2004; Tucker, 1979). 

NDVI =
NIR − Red
NIR + Red

(2) 

The NDVI shows a high correlation with vegetation health, green 
biomass, and vegetation productivity (Pettorelli et al., 2005). Since the 
mesophyll layer’s collapse occurs earlier than a decline in chlorophyll 
and before any visible changes, the NDVI is an early indicator of plant 
stress. NDVI values range from − 1 to +1, with values above 0 generally 
representing vegetation (Tucker and Sellers, 1986). 

To minimize the changes associated with the diurnal angle of the 
sun, the applicability of the Photochemical Reflectance Index (PRI) 
(Gamon et al., 1992) was also explored to study the phenological 
changes of the 19 species. The PRI is a narrow-band reflectance-based 
photosynthetic index derived by the normalized difference of reflec-
tance around the wavelength regions of 531 and 570 nm (Equation (2)) 
(Gamon et al., 1992). It is an effective indicator of photosynthetic ra-
diation use efficiency, CO2 uptake and nutrient deficiency in plants 
(Gamon et al., 1997). 

PRI =
R531 − R570
R531 + R570

(3)  

2.2.4. Deep Neural Network classification for species identification 
A Deep Neural Network framework was developed to train and 

validate the species-level classification using hyperspectral signatures. 
Neural networks are a set of algorithms, modelled loosely after the 
human brain, are designed to recognize patterns. With the rapid 

Fig. 2. Typified examples of masking canopies and homogenous regions: (a-d) are original images; (e-h) are corresponding masked images.  
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development of computer hardware and increased data, neural net-
works have been shown as one of the most effective tools for data 
analysis. A Deep Neural Network was developed and applied to identify 
the 19 species from hyperspectral images of the 75 trees in the urban 
landscape of Hong Kong. The structure of the network is shown in Fig. 4. 
The network inputs are the spectral values (spectral curve or bands), and 
outputs are the species’ probabilities. It contains one input layer (512 
neurons), one output layer (19 neurons), and three hidden layers (1024, 
1024, 512 neurons separately). The SoftMax function was applied at the 

output layer to generate the probabilities. 
For the hyperspectral image (spectral cube), each pixel has a spectral 

signature that contains 204 bands. The size of each image is 512 × 512 
(262, 144) pixels. It was not reasonable to use the whole image to train 
the neural networks. Some parts of the images do not belong to the 
target tree canopies, e.g., background objects and adjacent canopies of 
neighbouring trees. Therefore, all the images are first masked and 
clustered to exclude irrelevant parts from the images. To train and 
develop the Deep Neural Networks, a sample of ~50, 000 pixels for each 

Fig. 3. An example of image clustering and corresponding spectral signatures of classes. The shadow class in grey represents canopy shadow and/or branches, and 
the shadow class in orange indicates shaded leaves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. The overall workflow of species classification framework using the Deep Neural Network modelling.  
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image were randomly extracted. The model was comprised of two 
stages, i.e., the Training Stage and the Inference Stage. In the training 
stage, 3/4th of the sample data from each image was undertaken to 
construct the training dataset. Each sample of the training dataset con-
tains an input vector and an output vector. The input vector was the 
spectral curve (the original spectral signatures of the pixels) and the 
output vector was the ’one-hot coding’ vector of species. The remaining 
1/4th of the sample data was applied for the individual test and validate 
the training models of the Deep Neural Networks. In the inference stage, 
another set of samples, comprising ~20, 000 pixels, were selected from 
each image. The trained model was operated over these new samples. 
The model produces a probability of each sample to every species, for 
example, a sample pixel may have an 80% probability of matching with 
species A, 10% probability of matching with species B and 5% proba-
bility of reaching with species C. Thus, each sampled-pixel was labelled 
with the species name of the species with the highest probability. In this 
way, each sampled pixel from an image was classified as a related spe-
cies name, where the image was classified into a corresponding species 
based on the class of the majority of the 20, 000 sampled pixels. These 
samples were then separately taken from “whole image” and from 
“masked or ROI image”, and a similar prediction and classification 
procedure was also applied to the masked or ROI images to avoid the 
influence of irrelevant scene elements (background object, saturated 
pixels and pixels from adjacent tree canopies). In addition to training 
and validating six models for each round (R1, R2, R3, R4, R5, and R6), 
another set of four models were trained and tested by combining the 
datasets from different rounds, for instance, model R13 represents a 
model trained and tested for a combined dataset of R1 and R3. Similarly, 
the models R24, R35, R1234 were developed by combining the data 
acquired in corresponding rounds. The rounds were combined by skip-
ping a consecutive round to avoid model overfitting due to the least 
phenological difference (Fig. 7) as most of the tree species are evergreen. 

2.2.5. Optimal bands for species differentiation 
Visual interpretation of the hyperspectral signature may be helpful, 

but it could suffer from analyst bias. Therefore, a recursive partitioning 
(rpart) of the multivariate regression tree approach is applied to build a 
classification tree for the species according to the hyperspectral char-
acteristics of the species (De’Ath, 2002). The general structure of the 
algorithm is constructed based on a two-stage procedure and the 
resulting models are represented as binary trees (see supplementary 
material section S6). 

3. Results and discussions 

3.1. Spectral reflectance curves of healthy and unhealthy 

After collecting field data, two groups of categories were identified, i. 
e., healthy and unhealthy for each species. Representative spectral 
reflectance curves of each healthy and unhealthy species were extracted 
and plotted for comparison (Fig. 5). 

The graph associated with the spectral profiles of Acacia confusa is 
shown in Fig. 5, including a sample of healthy leaves and a sample of 
extremely stressed yellow leaves. The yellow leaves show a higher 
reflectance in the red and green regions of the electromagnetic spec-
trum, indicating a decline of the photosynthetic process such that the 
plant is less able to absorb the red light. On the other hand, many un-
healthy leaves reflect a lower spectral intensity of the NIR region, 
speculating a collapse of the mesophyll structure within the leaf itself. 

Similarly, spectral profiles of Delonix regia and Macaranga tanarius 
showed varying spectral responses in the leaves of the healthy and un-
healthy canopy. These health-related changes in spectral profiles in 
visible regions could be visually determined as a decline of photosyn-
thetic activity, but as if the change of internal leaf structure caused by 
abiotic stress, such as water-deficit stress, could be detected and 
analyzed by the increasing/decreasing reflectance in NIR portion. 

Fig. 5. All spectral profiles of healthy and unhealthy trees among different species. 50, 000 pixels were randomly selected from the hyperspectral photograph (after 
masking tree canopy or removing background) to calculate the mean canopy signature for each sample tree. Please refer to Table 1 for the number of tree samples for 
the corresponding species. 
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Furthermore, a decline in the photosynthetic process could also be 
indicated by reducing fluorescence energy around 760 nm wavelength. 
When absorbed by chlorophyll, solar energy is used for carbon fixation, 
heat dissipation, followed by the release of the emittance source at a 
longer wavelength in the form of chlorophyll fluorescence (Krause and 
Weis, 1991). Photosynthesis is the process through which plants make 
food to supply nutrients for their growth. This process of photosynthesis 
involves three steps; firstly, the plant converts chemicals into carbohy-
drates; secondly, heat is released as a by-product; and the third process is 
related to chlorophyll fluorescence in which plants release low energy 
photons during photosynthesis, which can give us information about the 
health of the plants. Spectral profiles of Acacia confusa, Delonix regia and 
Macaranga tanarius, a significant dip around 760 nm wavelength in 
plants indicated lesser fluorescence released because of the declining 
photosynthetic process. On the other hand, healthy plants showed a 
sharp rise, and a very subtle variation, in the fluorescence region. This 
drastic change in reflectance at ~760 nm can be clearly observed in the 
signature profile of healthy Acacia confusa. However, the fluorescence 
level in healthy plants does change along with diurnal and seasonal 
variations and varies across the species. It is interesting to note that the 
dotted green line (an unhealthy sample of the species Delonix regia) 
showed the lowest reflectance in the NIR region but with high fluores-
cence in the 760 band which might be related to the oxygen absorption 
band. It is difficult to explain the association between high fluorescence 
and lower NIR reflectance which might be an unusual pattern. It is hard 
to say if this is associated with the oxygen absorption band. During field 
visits, it has been observed that the spectral profiles of unhealthy can-
opies or deciduous tree canopies at the senescing stage are often influ-
enced by a strong reflectance from under canopy vegetation. It required 

more research and experiments to fully understand and explain such 
unusual patterns. 

Another set of examples of healthy and unhealthy spectral profiles of 
Casuarina equisetofollia, Celtis sinensis, Ficus hispida, and Machilus che-
kiangensis is provided. Higher reflectance in the visible wavelength re-
gion means that the leaves of unhealthy plants are not performing 
photosynthesis actively. In contrast, the second clue was also indicated 
by a dip in the fluorescence region (~ 760 nm) (an observable sharp dip 
in the spectral profile of Celtis sinensis) (Migliavacca et al., 2017). 
However, the leaf structure was still intact, which indicates a possibility 
of significant moisture deficiency or photosynthetic decline. Another 
feasible explaination could be the plants’ seasoning cycle as shown in 
the phenology plots of each species using numerous vegetation indices 
(Fig. 7). 

Among all of these species, the healthy Acacia confusa has the lowest 
reflection in the NIR region, while the unhealthy Delonix regia has the 
higher reflectance. In the visible portion of the electromagnetic spec-
trum, healthy Macaranga tanarius is found to have the minimum 
reflectance and the unhealthy Acacia confusa shows the highest reflec-
tance an equal amount of green and red reflectance, which is an indic-
ative sign of severely stressed yellow leaves. 

3.2. Seasonality analysis 

3.2.1. Bi-monthly mean canopy signatures 
All the images were split into six clusters and an appropriate label 

was assigned to each cluster. Later, a mean canopy signature was 
computed by excluding all the clusters or pixels labelled as non- 
vegetated, background or adjacent vegetation, and saturated. It was 

Fig. 6. Mean canopy spectral signature of different species in each round of in-situ data acquisition, the species are: (a) Acacia confuse (N = 6); (b) Albizia lebbeck (N 
= 3); (c) Mallotus paniculatus; (N = 5); (d) Ficus macrocarpa (N = 3). N indicates the number of tree samples for the corresponding species; 50, 000 pixels were 
randomly selected from the hyperspectral photograph (after masking tree canopy or removing background) to calculate the mean canopy signature for each sam-
ple tree. 
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calculated for all the 75 trees in each round and unified signature pro-
files were created to understand changes in spectral response. The 
combined plot of mean canopy signatures of each tree, acquired during 
different seasons (December, February, April, June, August and 
October) indicated unique variations in spectral characteristics (Fig. 6 
and supplementary material section S7). Fig. 6 represents the spectral 
signature profiles of representative trees of the four species – (a) Acacia 
confusa, (b) Albizia lebbeck, (c) Mallotus paniculatus and (d) Ficus hispida. 
It is interesting to note that the Acacia confusa and Ficus hispida showed a 
gradual increase in reflectance, especially in the NIR region of the 
spectrum, from winter to summer though both species possess different 
spectral signatures but show a relatively similar pattern in seasonality. 
This can be attributed to the nature of both of these species that are 
evergreen with no significant leaf-off season (Fig. 6 a & d). On the other 
hand, Albizia lebbeck and Mallotus paniculatus showed a decline in 
photosynthetic activity due to the leaf-off period during February and 
April, respectively. It was also observed during the data acquisition that 
the Albizia lebbeck started to shed leaves in February and all the leaves 
were fell-off by April (Fig. 6 b). Nonetheless, this species starts to regrow 
leaves with the start of the summer season, and as a result, reflectance 
started to increase in the images acquired in June and August with the 
presence of younger and newer leaves (Fig. 7). Mallotus paniculatus 
(unhealthy tree) started leaves-shedding earlier in February. The leaves’ 
regrowth starts in April and higher reflectance is observed in June due to 
full canopy coverage (Fig. 6 c). 

3.2.2. Vegetation indices (VIs) analysis of seasonality 
High spectral resolution (higher number of narrow bands) images 

acquired by the SPECIM IQ provides sufficient spectral information, 
particularly in visible and NIR spectral wavelength region. These narrow 
bands can effectively be used to identify species with varying growing 
and health conditions in the urban landscape of Hong Kong. Therefore, 
in addition to 204 spectral bands of the hyperspectral images, 60 VIs 
were computed to enhance the spectral feature space by combining in-
formation of different bands, which were obtained from the online index 
database (https://www.indexdatabase.de/) and the wavelengths were 
substituted by corresponding bands of the hyperspectral images (please 

see Table S1 for the list of VIs). 
Image acquisition was followed by the development of phenology of 

the species using conventional multispectral broadband vegetation 
indices (e.g., Simple Ratio, Normalized Difference Vegetation Index, and 
Enhanced Vegetation Index) and advanced hyperspectral narrow-band 
indices (e.g., Hyperspectral Vegetation Index, Greenness Index, 
Normalized Difference Infrared Index, Red-Edge Vegetation Stress Index 
and Photochemical Reflectance Index). A representative pattern of 
vegetation changes along the year using NDVI and PRI is shown in Fig. 7 
and S4. For example, the first six asterisks showed the trend of NDVI for 
Acacia auriculiformis all year round. The NDVI of Acacia auriculiformis 
keeps increasing and reaches a peak in June. But for Acacia confusa, the 
NDVI keeps increasing and a slight drop exists around June for its 
flowering season. The yellow flowers had a significant influence on the 
index. For Albizia lebbeck, there is a significant drop in April and the 
trends before and after April are quite different due to its flowering 
season is around May, and its fruiting season is July to December. 
Casuarina equisetifolia is an evergreen tree, so the trend of NDVI keeps 
increasing after winter. The flowering season of Machilus chekiangensis is 
observed in December and in the last third of July, its fruits turn from 
green to black, so there was a drop in August. Mallotus paniculatus is an 
evergreen tree and its lower surface of leaves is white or rusty white. 

In peak growing season, almost all species showed high reflectance at 
the upper canopy and under canopy levels during the summer period, 
which made it difficult to differentiate among different species. On the 
other hand, during the start (February) and end (October) of the 
growing season, upper canopies of trees vary due to different pheno-
logical cycles, which can distinguish among different species. Also, 
during these periods, under canopy vegetation (grasses or shrubs) were 
relatively less green or dry. Thus, the spectral response of trees exclu-
sively comprised of upper canopies and showed variation among 
different species. 

3.3. Deep Neural Network classification for species identification 

Six models were trained and tested separately for each round of the 
datasets (Fig. 4). Then, four additional models were trained and tested 

Fig. 7. Phenology patterns (changes in the vegetation greenness or productivity) of all the species using the Normalized Difference Vegetation Index (NDVI) (a) and 
Photochemical Reflectance Index (PRI) (b). For each species, an average value of an index (shown with blue asterisk *) is calculated from all the samples of a species 
(shown with different colours for each round), major x-axis label is showing the species name (please refer to Table 1 for full names of the species) while the minor x- 
axis label is representing each round (Dec (R1), Feb (R2), Apr (R3), Jun (R4), Aug (R5), and Oct (R6)). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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by combining the datasets from different rounds. Besides, models 
trained on each round were cross-validated with the data from all other 
rounds. For example, the model developed for R1, was also validated 
with data collected during R2, R3, R4, R5 and R6. Similarly, the com-
bined models (R13, R24, R35, and R1234) were also validated. The 
models’ training accuracies (T), validation accuracies (V), overall ac-
curacies, producer’s accuracies (omission errors) and user’s accuracies 
(commission errors) of classification inferences using the full image (All) 
and/or masked image (ROI), are presented in Table 2 and Table 3. 

All the models showed very high accuracy for individual model 
testing, validation and inferences. The individual models’ testing accu-
racy ranged from 0.856 to 0.946 and the validation accuracy ranged 
from 0.878 to 0.956, with the highest accuracy achieved for the model 
R6 (October). The accuracy of species classification from the inferences 
ranged from 0.853 to 0.932, for samples taken from the whole images, 
and ranged from 0.88 to 0.96, for samples taken from the masked im-
ages. Specifically, the maximum accuracy is achieved for R6 (October) 
for both full and masked images while the lowest accuracy is obtained 
for R3 (April) and R4 (June). The testing and validation accuracies were 
the highest for R5 (0.946 and 0.956) and R1 showed the lowest accu-
racies (0.856 and 0.878). 

For the combined models, testing accuracy ranged from 0.891 to 
0.923, and validation accuracy is ranged from 0.914 to 0.937. The 
highest testing and validation accuracy was achieved for R35 (combined 
datasets of Round 3 - April and Round 5 - August), in 0.923 and 0.937, 
respectively. It is interesting to note that the inferential classification 
results were higher for the rounds integrated with the training model. 
For example, for the combined model of R13, the Round 1 and Round 3 
testing data showed the highest accuracy. These results were also 
indicative of seasonality in the datasets as the seasonality pattern was 
selected by the training models, which was depicted as a higher accuracy 
of the results obtained from the corresponding models that had been 
combined for the training. The producer’s accuracies (omission errors) 
and user’s accuracies (commission errors) for tree species identification 
using the Deep Neural Network classification along with detailed 
confusion matrices are given in Table 3 and supplementary material 
section S3. Most of the species show high (100%) producer’s and user’s 
accuracies. Nevertheless, poor accuracies for some of the species is 
indicative of sample size (Table 1) for species identification. This implies 
that future studies could consider increasing the sample size either by 
adding more samples for each species or by grouping species by their 
spectral families if it is improbable to increase the sample size. Another 
alternative could be benefitting from high spatial resolution hyper-
spectral imagery acquired from UAVs. It is important to note that the 
extraction of 50,000 pixels from each of the 75 samples might lead to 
autocorrelation problem. However, the Deep Neural Network 

classification adopted in this study can self-learn to distinguish between 
the samples for classification; and the higher accuracies can be achieved 
by increasing samples size and amount of input data. Nevertheless, 
special attention should be paid if traditional classification approaches 
are used for species identification. 

3.4. Separability of the species from the hyperspectral space and influence 
of seasonality 

Results from the Deep Neural Network classification for species 
identification indicated that the data acquired in R6 (i.e., during 
October, autumn season) provided maximum prediction accuracy for 
species separability. It is difficult to visually differentiate spectral 
characteristics of species to find optimal wavelengths (or bands) for 
species identification. Therefore, a decision tree classification was per-
formed for each round of data (supplementary material section S6). Like 
the Deep Neural Network classification (section 3.5, Table 2; and sup-
plementary material section S2), the Decision Tree classification (sup-
plementary material section S6) showed that the data acquired during 
the autumn season (R6 – October) can provide the maximum accuracy 
(overall accuracy = 0.80, kappa = 0.784) for species differentiation. 
Generally, the species can be categorized into six spectral groups 
distinguished by the bands B1 (400 nm), B7 (405 nm), B87 (649 nm), 
B91 (661 nm), B111 (721 nm), B174 (911 nm), and B204 (1000 nm) 
which can be further segregated to individual species level by incorpo-
rating other relevant bands (Figure S9, supplementary material section 
S6.3). Aleurites moluccana, Casuarina equisetifolia, Acacia confuse, Bau-
hinia variegate, and Mallotus paniculatus can be distinguished and isolated 
by the bands B7 (405 nm), B174 (911 nm), B111 (721 nm), B181 (933 
nm), B40 (510 nm) and B199 (988 nm) while another group of species 
(Cinnamomum camphora, Aleurites moluccana and Acacia confuse) can be 
detected by including bands B87 (649 nm), B108 (712 nm), and B83 
(637 nm). The third group of species (Broussonetia papyrifera, Ficus 
variegata (var. chlorocarpa), Ficus macrocarpa, Acacia auriculiformis, and 
Macaranga tanarius var. tomentosa) can be recognized by including B204 
(1000 nm), B113 (727 nm), B22 (458 nm), B1 (400 nm), and B5 (409 
nm). It is important to note that the bands in the blue wavelength region 
played an important role in differentiating among the species. The in-
formation in the blue bands is often neglected in vegetation monitoring 
from satellite remote sensing due to a higher atmospheric perturbation, 
however, the wavelength region might play a pivotal in the identifica-
tion of tree species from remote sensing datasets. The right branch of the 
decision tree characterized the other three groups of species. B7 (405 
nm), B204 (1000 nm) and B1 (400 nm) can help to label Ficus virens (var. 
sublanceolata) and Celtis sinensis. Mallotus paniculatus and Albizia lebbeck 
were distinguished with additional bands – B42 (516 nm), B9 (420 nm) 

Table 2 
Overall accuracies of all the models for species idendification.  

Model R1 R2 R3 R4 R5 R6 R13 R24 R35 R1234 

T1 0.856 0.892 0.919 0.910 0.946 0.923 0.905 0.891 0.923 0.897 
V2 0.878 0.908 0.934 0.923 0.956 0.936 0.927 0.914 0.937 0.923 
R1 All 0.918 0.178 0.123 0.082 0.147 0.082 0.932 0.205 0.137 0.932 

ROI 0.932 0.164 0.123 0.164 0.164 0.068 0.945 0.192 0.164 0.945 
R2 All 0.147 0.920 0.133 0.133 0.137 0.120 0.227 0.933 0.187 0.933 

ROI 0.147 0.960 0.160 0.173 0.164 0.133 0.227 0.947 0.227 0.947 
R3 All 0.067 0.187 0.853 0.160 0.147 0.080 0.867 0.267 0.827 0.893 

ROI 0.067 0.200 0.880 0.160 0.133 0.093 0.867 0.253 0.853 0.893 
R4 All 0.147 0.200 0.080 0.853 0.187 0.093 0.160 0.853 0.173 0.867 

ROI 0.133 0.200 0.080 0.880 0.200 0.107 0.133 0.920 0.200 0.893 
R5 All 0.147 0.107 0.107 0.147 0.907 0.187 0.253 0.200 0.907 0.227 

ROI 0.133 0.067 0.120 0.160 0.933 0.173 0.187 0.173 0.920 0.200 
R6 All 0.081 0.095 0.149 0.068 0.216 0.932 0.108 0.149 0.203 – 

ROI 0.081 0.135 0.176 0.095 0.284 0.959 0.135 0.162 0.230 –  

1 T is Training accuracy and 
2 V is Validation accuracy; The training accuracy is the correct rate of training dataset while validation accuracy is the correct rate of the testing dataset. All stands for 

the testing points sampled from the full image, while ROI represents the testing points sampled from the masked images. 
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and B1 (400 nm). Both the species changes leaves during February and 
April, therefore, were easy to identify but at the same time absence of 
leaves can give false reflection from under canopy vegetation which can 
lead to confusion among other species and reduce prediction accuracy. 
Bands B115 (733 nm), B94 (670 nm), and B185 (945 nm) helped to 
further segregate another group of species including Delonix regia, 
Casuarina equisetifolia, Celtis sinensis and Cinnamomum parthenoxylon. 
These optimal spectral wavelengths or bands may vary in different 
seasons due to the inherent seasonality of the species and the emergence 
of under-canopy vegetation. Nevertheless, an iterative method of 
ensembled machine learning approaches can be adapted to identify a 
spectrally unique group of species to enhance prediction accuracy with 
limited spectral data or in the regions with a higher number of spectrally 
similar species. A multivariate regression tree (MRT) can be developed 
to group species with similar spectral behaviour and to determine in-
dicator species for each spectral group. The MRT assembles similar 
species in association with environmental or spectral constraints (Abbas 
et al., 2021). Grouping species in their biological families may not 
provide optimal results as the biologically similar species might not be 
similar in leaves and/or spectral traits. However, the grouping may 
change based on the available spectral space. 

Overall classification accuracy of each round, confusion matrices, 
temporal spectral profiles and vegetation indices indicated a strong in-
fluence of phenology or seasonality on the identification of species from 
the hyperspectral images. Models developed on multitemporal hyper-
spectral and multispectral data have proven their ability to enhance the 
accuracy of classifying forest types and plantation tree species compo-
sition in a tropical landscape (Fagan et al., 2015). Seasonality can in-
fluence negatively or positively in the recognition and prediction 
capability of classification. In this study, the bi-monthly data was 
explored to determine which season is the best to separate most of the 
species. On the other hand, data acquired during the start (Round 3 - 
April) or peak (Round 4, 5 - June, August) of the growing season showed 
the least separability among the species. This is probably since most of 
the species in Hong Kong’s urban landscape are evergreen, although 
there are spectral differences among the species, especially when using 
the full spectral space, it is difficult to distinguish at the peak of the 
growing seasons. During the leave off-season (in April) of the Albizia 
lebbeck, it is difficult to distinguish it from other species including Celtis 
sinensis and Delonix regia. Although during this time of the season these 
species are mixed due to similar canopy traits (absence or reduction in 
the proportion of green leaves), the similar spectral and seasonal prop-
erty can help to distinguish these species among the rest of the species. 
However, due mixing of these three species overall accuracy (user’s and 

producer’s accuracy) drops significantly during round three (R3 - April). 
Therefore, for the highest accuracy of these species’ identification, the 
autumn season is the best, during which the maximum accuracy can be 
achieved around 100%. These three species can be distinguished by the 
bands B7 (405 nm), B204 (1000 nm), B91 (661 nm), B1 (400 nm), B115 
(733 nm), B42 (516 nm), B185 (945 nm) from the hyperspectral data 
acquired in October (R6). Aleurites moluccana was the most distin-
guishable species during all the seasons, probably due to its leave 
structure, big and evergreen leaves. However, it is important to note the 
number of sampling of this species was also the highest, which indicates 
that the user’s and producer’s accuracies of other species might be 
increased by increasing the number of samples. The detection accuracy 
of Macaranga tanarius var. tomentosa varied from 55% to 100% in 
different seasons, seasonal analysis of the detectability of the species 
indicated that it can be easily distinguished with hyperspectral data 
acquired in the winter season (R1 – December) and it can be categorized 
by using the bands B41 (513 nm), B107 (709 nm), B189 (957 nm), B26 
(470 nm), B60 (569 nm), B7 (405 nm), B174 (911 nm), and B87 (649 
nm). Macaranga tanarius var. tomentosa is a common species in the urban 
landscape of Hong Kong, it is an evergreen species but its leaves turn 
yellow during the leave changing season where new leaves sprout and 
older leaves shed down. 

Apart from the seasonality and phenological traits of a plant, the 
spectral characteristics of plants can vary along different growth stages 
and environmental conditions. In evergreen ecosystems, changes in 
vegetation phenology and productivity are driven by the emergence of 
new leaves and the shedding of older leaves, whereas seasonality in 
photosynthesis is explained by leaf development and demography (Wu 
et al., 2016). Hyperspectral analysis of the 20 tropical species experi-
mental plots showed that a significant correlation between growth rates 
and spectral properties (Caughlin et al., 2016). Fluorescence and NDVI 
both are strongly associated with surface soil moisture which varies with 
the vegetation class (grass, shrub and forest) and phenological stages 
(Shen et al., 2021). Buddenbaum et al. (2005) achieved 75% accuracy to 
classify coniferous tree species and age classes from hyperspectral 
remote sensing in a forest of western Germany. Another study in Hong 
Kong’s secondary forest documented a significant difference in fluo-
rescence emissions (which is a proxy variable for plant biomass or car-
bon flux measurement) among different age groups of Hong Kong’s 
recovering tropical forests (Irteza et al., 2021). They analyzed hyper-
spectral data obtained from the Hyperion satellite and the ground-based 
hyperspectral radiometer. They observed higher productivity up to the 
age of 61 years old and then a decline in productivity in the old-growth 
forests. This accords with fairly recent pronouncements by scientists that 

Table 3 
Producer’s accuracies (omission errors) and user’s accuracies (commission errors) for tree species identification using the Deep Neural Network classification.  

Species Producer’s Accuracy User’s Accuracy 

R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6 

a.aur 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 
a.con 1.00 1.00 1.00 0.83 1.00 1.00 0.63 0.86 0.86 0.71 0.75 1.00 
a.leb 1.00 1.00 0.00 0.67 0.67 1.00 1.00 1.00 0.00 1.00 1.00 1.00 
a.mol 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 
b.var 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 
b.pap 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
c.equ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.83 1.00 1.00 1.00 
c.sin 0.88 1.00 1.00 0.83 1.00 1.00 1.00 1.00 0.75 1.00 0.86 0.86 
c.cam 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.80 
c.par 1.00 0.50 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
d.reg 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.75 0.60 1.00 1.00 1.00 
f.his 0.75 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
f.mic 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00 0.75 
f.var 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 
f.vir 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 
l.mon 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
m.tan 1.00 1.00 1.00 0.88 0.88 0.71 1.00 1.00 0.73 0.70 1.00 1.00 
m.che 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 0.75 
m.pan 0.60 0.60 0.20 0.20 0.40 0.60 1.00 1.00 1.00 1.00 1.00 1.00  
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older forests are not as efficient as younger rapidly growing forests as 
carbon sinks. Integration of imaging spectroscopy and light detection 
and ranging (LiDAR) have enormous potential of combined assessment 
of tree foliage traits along with structural attributes (Asner et al., 2015; 
Dalponte et al., 2012; Shi et al., 2021; Trier et al., 2018). The current 
study did not incorporate the growth stages of the 75 trees in the urban 
landscape of Hong Kong due to limited accessibility. This research gap 
can be fulfilled in future by targeting a few most common species but 
with varying degrees of the growth stage. 

This study examined the utility of hyperspectral imagery for the 
precise and accurate classification of urban tree species. Results ob-
tained from the hyperspectral mapping provided higher accuracy (96%) 
when compared with a similar study using multispectral aerial photos in 
the urban landscape of Hong Kong (unpublished). Hyperspectral imag-
ery provided better accuracy for tree species identification when 
compared with results obtained from multispectral imagery as 
numerous studies has documented an increase in mapping accuracies of 
tree species with a finer spectral resolution (Arasumani et al., 2021; 
Laurin et al., 2016; Lee et al., 2016; Miyoshi et al., 2020; Modzelewska 
et al., 2021; Wan et al., 2021). Ferreira et al. (2016) noted a 14–17% 
increase in the accuracies when SWIR (shortwave infrared) bands were 
combined VNIR (visible/near-infrared) bands to discriminate and map 
tree species in tropical seasonal semi-deciduous Brazilian Atlantic Forest 
Biome. Overall, the accuracy achieved with hyperspectral data, 
including narrowband indices, was15 % higher than the maximum ac-
curacy obtained with multispectral VNIR and SWIR imagery (Ferreira 
et al., 2016). Cho and Lee (2014) also observed an additive advantage of 
SWIR for tree species classification. A study in Finnish boreal forest 
revealed the utility of hyperspectral imagery to retrieve species-specific 
canopy traits. Likewise, a comparative assessment of hyperspectral 
(Hyperion and CHRIS-proba) and multispectral (ALI and Landsat 8) 
satellite images revealed 40–50% better results for classifying stone pine 
forest in Beirut (Awad, 2018). Future studies of urban trees species 
identification can be benefited from the flexibility by adding hyper-
spectral SWIR imagery. 

4. Conclusion 

In this study, the hyperspectral images of 75 trees belonging to 19 
species and six families were acquired using terrestrial hyperspectral 
remote sensing. The images were acquired every two months from 
November 2018 to October 2019, with 450 images captured throughout 
the six rounds of image acquisition. The hyperspectral phenology pat-
terns of the species were developed using the 60 conventional multi-
spectral broad-band, hyperspectral narrow-band, and advanced 
hyperspectral narrow-band indices, to indicate the phenological trait of 
particular species to characterize phenology and tree health conditions. 
A Deep Neural Network framework was developed to estimate and 
classify species from the hyperspectral images in addition to plants’ 
phenological traits. The results showed that the Deep Neural Network 
approach achieved high accuracy, ranging from 85% to 96%. The 
spectral reflectance curves of representative tree species in healthy and 
unhealthy conditions were extracted and analyzed including Acacia 
confusa, Delonix regia, Macaranga tanarius, Casuarina equisetofollia, Celtis 
sinensis, Ficus hispida, and Machilus chekiangensis. The species identifi-
cation results are indicative of different seasonality characteristics for 
evergreen (e.g., Acacia auriculiformis, Acacia confuse, Casuarina equi-
setifolia, Mallotus paniculatus) and deciduous (e.g., Albizia lebbeck) spe-
cies in Hong Kong. The results of this study can not only be 
recommended to develop a spectral library for territory-wide mapping 
and monitoring for tree species and health conditions in Hong Kong, and 
also be a representative case study for a subtropical zone with a high 
diversity of tree species in an intense urban environment or along with 
hilly topography, which contribute the hyperspectral imaging and 
database development in the world. 

In current image acquisition procedures, the experiments reveal that 

integration time and light intensity are the key parameters for high 
quality data acquisition. For the future work, it is important that the 
sample size should be increased by 10–100 folds in order to enhance the 
producer’s and user’s accuracies. This could also be achieved by an in-
tegrated measurement of UAV-based hyperspectral and LiDAR data for 
identifying tree species and their structural characteristics (Alonzo et al., 
2014; Ballanti et al., 2016; Degerickx et al., 2018; Hartling et al., 2019; 
Liu et al., 2017). Furthermore, random extraction of a number of pixels 
(50, 000 in this case) from each of the 75 samples might lead to auto-
correlation issue, while applying conventional classification algorithms 
for species identification. A well-designed stratified sampling method 
should then be further developed. In addition, by increasing the number 
of samples with more field spectra data could help on improving the 
performance of the Deep Neural Network classification model. 
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Bojinski, S., Schaepman, M., Schläpfer, D., Itten, K., 2003. SPECCHIO: a spectrum 
database for remote sensing applications. Comput Geosci 29, 27–38. 

S. Abbas et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.isprsjprs.2021.05.003
https://doi.org/10.1016/j.isprsjprs.2021.05.003
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0005
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0005
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0005
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0005
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0010
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0010
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0010
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0015
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0015
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0025
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0025
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0030
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0030
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0030
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0035
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0035
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0040
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0040
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0040
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0045
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0045
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0050
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0050
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0055
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0055
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0060
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0060
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0060
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0060
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0065
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0065
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0065
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0070
http://refhub.elsevier.com/S0924-2716(21)00128-3/h0070


ISPRS Journal of Photogrammetry and Remote Sensing 177 (2021) 204–216

215

Bolund, P., Hunhammar, S., 1999. Ecosystem services in urban areas. Ecolog. Econ. 29, 
293–301. 

Buddenbaum, H., Schlerf, M., Hill, J., 2005. Classification of coniferous tree species and 
age classes using hyperspectral data and geostatistical methods. IJRS 26, 
5453–5465. 

Caughlin, T.T., Graves, S.J., Asner, G.P., Van Breugel, M., Hall, J.S., Martin, R.E., 
Ashton, M.S., Bohlman, S.A., 2016. A hyperspectral image can predict tropical tree 
growth rates in single-species stands. Ecol. Appl. 26, 2369–2375. 

Cho, H., Lee, K.-S., 2014. Comparison between hyperspectral and multispectral images 
for the classification of coniferous species. Korean J. Remote Sensing 30, 25–36. 

Cho, M.A., Skidmore, A.K., 2006. A new technique for extracting the red edge position 
from hyperspectral data: The linear extrapolation method. RSEnv 101, 181–193. 

Clark, M.L., 2020. Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral 
images for mapping forest alliances in Northern California. ISPRS J. Photogramm. 
Remote Sens. 159, 26–40. 

Cochrane, M., 2000. Using vegetation reflectance variability for species level 
classification of hyperspectral data. IJRS 21, 2075–2087. 

Cotrozzi, L., Couture, J.J., Cavender-Bares, J., Kingdon, C.C., Fallon, B., Pilz, G., 
Pellegrini, E., Nali, C., Townsend, P.A., 2017. Using foliar spectral properties to 
assess the effects of drought on plant water potential. Tree Physiol. 37, 1582–1591. 

Dadon, A., Mandelmilch, M., Ben-Dor, E., Sheffer, E., 2019. Sequential PCA-based 
classification of mediterranean forest plants using airborne hyperspectral remote 
sensing. Remote Sensing 11, 2800. 

Dalponte, M., Bruzzone, L., Gianelle, D., 2012. Tree species classification in the Southern 
Alps based on the fusion of very high geometrical resolution multispectral/ 
hyperspectral images and LiDAR data. RSEnv 123, 258–270. 

De’Ath, G., 2002. Multivariate regression trees: a new technique for modeling 
species–environment relationships. Ecology 83, 1105–1117. 

Degerickx, J., Roberts, D.A., McFadden, J.P., Hermy, M., Somers, B., 2018. Urban tree 
health assessment using airborne hyperspectral and LiDAR imagery. IJAEO 73, 
26–38. 

Delegido, J., Van Wittenberghe, S., Verrelst, J., Ortiz, V., Veroustraete, F., Valcke, R., 
Samson, R., Rivera, J.P., Tenjo, C., Moreno, J., 2014. Chlorophyll content mapping 
of urban vegetation in the city of Valencia based on the hyperspectral NAOC index. 
Ecol. Indicators 40, 34–42. 

Delegido, J.a., 2014. Chlorophyll content mapping of urban vegetation in the city of 
Valencia based on the hyperspectral NAOC index. Ecol. Indicators 40, 34–42. 

EcoSIS, N., 2014. Ecological Spectral Information System, 2021.04.15 ed. 
Escobedo, F.J., Kroeger, T., Wagner, J.E., 2011. Urban forests and pollution mitigation: 

Analyzing ecosystem services and disservices. Environ. Pollut. 159, 2078–2087. 
Escobedo, F.J., Nowak, D.J., 2009. Spatial heterogeneity and air pollution removal by an 

urban forest. Landscape Urban Plann. 90, 102–110. 
Fagan, M.E., DeFries, R.S., Sesnie, S.E., Arroyo-Mora, J.P., Soto, C., Singh, A., 

Townsend, P.A., Chazdon, R.L., 2015. Mapping species composition of forests and 
tree plantations in northeastern Costa Rica with an integration of hyperspectral and 
multitemporal landsat imagery. Remote Sensing 7, 5660–5696. 

Ferreira, M.P., Wagner, F.H., Aragão, L.E.O.C., Shimabukuro, Y.E., de Souza Filho, C.R., 
2019. Tree species classification in tropical forests using visible to shortwave 
infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote 
Sens. 149, 119–131. 

Ferreira, M.P., Zortea, M., Zanotta, D.C., Shimabukuro, Y.E.a., 2016. Mapping tree 
species in tropical seasonal semi-deciduous forests with hyperspectral and 
multispectral data. RSEnv 179, 66–78. 

Gamon, J., Penuelas, J., Field, C., 1992. A narrow-waveband spectral index that tracks 
diurnal changes in photosynthetic efficiency. RSEnv 41, 35–44. 

Gamon, J., Serrano, L., Surfus, J., 1997. The photochemical reflectance index: an optical 
indicator of photosynthetic radiation use efficiency across species, functional types, 
and nutrient levels. Oecologia 112, 492–501. 

Ghosh, G., Kumar, S., Saha, S., 2012. Hyperspectral satellite data in mapping salt- 
affected soils using linear spectral unmixing analysis. J. Indian Soc. Remote Sens. 40, 
129–136. 
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