

TORNOS

Faraday Rotators & Isolators 500 nm to 1030 nm

Innovative High Quality Laser Solutions

EOT's TORNOS Faraday Rotators rotate the plane of polarized light 45° in the forward direction and an additional 45° of non-reciprocal rotation in the reverse direction while maintaining the light's linear polarization. When placed between crossed polarizers, a Faraday rotator becomes an optical isolator.

An optical isolator provides high transmission in the forward direction and strongly attenuates any light traveling in the reverse direction, effectively protecting laser diodes from the deleterious effects of back reflections.

TORNOS Optical Isolators can be ordered with dichroic glass polarizers to minimize the size of the device for low power applications or they can be ordered with polarizing beam splitter cube polarizers for applications where maximum transmission is required and power levels do not permit the use of dichroic glass polarizers. By aligning the output polarizer orthogonal to the backward traveling light, isolation can be maximized within the usable wavelength range of the optical isolator.

FEATURES

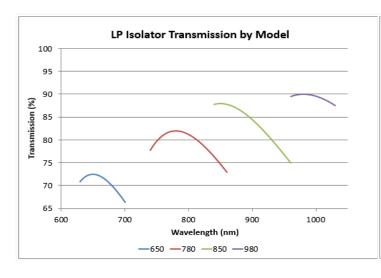
- Wavelength tunability
- Attain 60 dB using two isolators in series
- Mounting clamp
- All isolators contain rejected beam escape ports

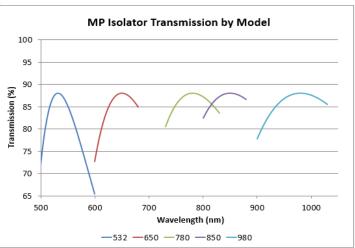
OPTIONS

- Choice of dichroic glass polarizers or polarizing beam splitter cube polarizers
- Input/Output waveplates available
- Customization available

APPLICATIONS

- Environmental Sensing
- Microscopy
- Spectroscopy
- DNA Sequencing
- Laboratory and R&D use
- Protecting pump lasers in amplified systems


Innovative High Quality Laser Solutions


SPECIFICATIONS					
Rotators					
Center Wavelength	Isolation at 22 °C°	Transmission at 22 °C ^b	Pulsed Damage Threshold		
532 nm	≥30 dB	>97%	3 J/cm² at 10 ns		
650 nm	≥30 dB	>98%	3 J/cm² at 10 ns		
780 nm	≥30 dB	>98%	3 J/cm² at 10 ns		
850 nm	≥30 dB	>98%	3 J/cm² at 10 ns		
980 nm	≥30 dB	>98%	3 J/cm² at 10 ns		

Isolators					
Center Wavelength	Spectral Range	Isolation at 22 °C°	Transmission at 22 °Cb	Polarizer Type	Damage Threshold ^d
650 nm	630 nm to 700 nm	>30 dB	>72.5%	Dichroic Glass	25 W/cm ² CW
780 nm	740 nm to 860 nm	>30 dB	>82%	Dichroic Glass	25 W/cm ² CW
850 nm	840 nm to 960 nm	>30 dB	>88%	Dichroic Glass	25 W/cm ² CW
980 nm	960 nm to 1030 nm	>30 dB	>90%	Dichroic Glass	25 W/cm ² CW
532 nm	500 nm to 600 nm	>27 dB	>88%	PBS Cube	1 J/cm² at 10 ns
650 nm	600 nm to 680 nm	>27 dB	>88%	PBS Cube	1 J/cm² at 10 ns
780 nm	730 nm to 830 nm	>27 dB	>88%	PBS Cube	1 J/cm² at 10 ns
850 nm	800 nm to 880 nm	>27 dB	>88%	PBS Cube	1 J/cm² at 10 ns
980 nm	950 nm to 1010 nm	>27 dB	>88%	PBS Cube	1 J/cm² at 10 ns

Product specifications are subject to change. All products are RoHS compliant.

Note: The addition of a waveplate may restrict wavelength range.

 $^{^{\}rm a}$ When placed between crossed polarizers having an extinction ratio of \geq 1000:1

^b At center wavelength

^c When tuned for maximum isolation

d Isolators with PBS cube polarizers have CW damage threshold of 2 KW/cm².

Innovative High Quality Laser Solutions

TORNOS Compact

Faraday Rotators & Isolators 633 nm to 1064 nm

EOT's TORNOS Compact Faraday rotators and isolators are designed for wide-ranging end applications where optical feedback can adversely affect laser performance. The TORNOS Compact provides high transmission in the forward direction while strongly attenuating light traveling in the reverse direction, protecting lasers from the deleterious effects of back reflections.

Our TORNOS Compact devices deliver industry-best laser reliability and performance. The TORNOS Compact covers a variety of wavelengths in the NIR. A range of devices is available which allow for optimal isolation and transmission at specific wavelengths, depending on the model, and within the spectral bandwidth of the device. Our standard models are available at wavelengths common to many applications. We can also supply the TORNOS Compact optimized for non-standard wavelengths upon request.

Some common applications for the TORNOS Compact are the elimination of frequency instability in single frequency lasers such as laser diodes and OPSLs, the prevention of mode-hopping in external cavity diode lasers, and the elimination of parasitic oscillations due to ASE in amplified laser systems.

The TORNOS Compact isolators contain optically-contacted polarizing beam splitter cubes resulting in high transmission as compared to other available isolators. The TORNOS Compact's industry-leading high transmission results in more photons for your application. This allows diodes to be run at lower currents extending diode lifetime. The compact design makes it highly suitable for OEM integration.

FEATURES

- High transmission
- Extends the life of your diode
- Compact design

OPTIONS

- Optional waveplate for manipulation of polarization
- Mounting Clamp Available
- Customization available

APPLICATIONS

- Raman Spectroscopy
- DNA Sequencing
- Imaging
- Environmental Sensing
- Mapping
- Microscopy
- 3D Metrology
- Protecting pump lasers in amplified systems
- Cold Atom

Innovative High Quality Laser Solutions

AVAILABLE MODELS			
Model	Product	Wavelengths	
	2 mm NIR Rotator	785 nm	
	2 mm NIR Isolator	633 nm and 785 nm	
	4 mm NIR Isolator	785 nm	
	4 mm NIR+ Isolator	850 nm	
	2 mm NIR+ Rotator & Isolator	1064 nm	

SPECIFICATIONS					
Rotators					
Standard Wavelength	Spectral Range	Tunable Temperature	Transmission ^a	Forward Power Handling	
785 nm	780 nm to 790 nm	10 °C to 30 °C	≥98%	5 W	
1064 nm	1059 nm to 1069 nm	10 °C to 30 °C	≥98%	5 W	

Isolators					
Standard Wavelength	Spectral Range	Tunable Temperature	Isolation ^a	Transmission ^a	Forward Power Handling
633 nm	628 nm to 638 nm	10 °C to 30 °C	≥33 dB	≥95%	5 W
785 nm	780 nm to 790 nm	10 °C to 30 °C	≥33 dB	≥95%	5 W
850 nm	845 nm to 855 nm	10 °C to 30 °C	≥33 dB	≥95%	5 W
1064 nm	1059 nm to 1069 nm	10 °C to 30 °C	≥33 dB	≥95%	5 W

Product specifications are subject to change. All products are RoHS compliant. $^{\rm a}$ At specified wavelength and temperature NOTE: For non-standard wavelengths, contact EOT for more information.