

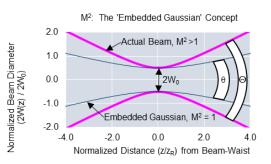
Datasheet

M-Squared Measurement Systems

Why care about M-Squared?

- It is the QA delivery or acceptance criterion on a laser or laser system.
- You need to understand why a 'focused' laser spot diameter is larger than calculation predicted.
- You are tasked with measuring M², and/or somebody gave you a copy of the ISO 11146 standard.
- Because M² is an invariant property of a laser beam propagating through a perfect* optical system. M² may therefore be used to describe the beam at any point in that optical system. (*The optical system neither distorts nor truncates the beam.)

 M^2 or **Beam Quality factor** is a dimensionless parameter that characterizes the degree of *imperfection* of a real-world laser beam. The lower the value of M^2 , the more tightly the beam can be focused to a small spot. A perfect TEM₀₀ beam has $M^2 = 1$.


No laser beams are 'perfect'. Limitations of the laser cavity, the lasing medium, and/or the output/ancillary optics, means that most beams are not the diffraction-limited, Gaussian profile, pure TEM₀₀ mode described in textbooks. Complex beams contain multiple mode contributions that increase M². Even a 'good' laboratory HeNe laser has an M² of around 1.05 to 1.2, rather than the 1.0 of a 'perfect' TEM₀₀ beam.

At its simplest M² may defined as: *The ratio of the divergence of the actual beam, to that of a theoretical, diffraction-limited beam with the same waist diameter.*

 $M^2 = (\Theta/\theta)$ where Θ is the measured, far-field, full-angle divergence of the actual beam, and θ is the theoretical far-field divergence of a 'perfect' TEM₀₀ Gaussian beam which has the same waist diameter as the measured beam.

DataRay offers both imaging camera and slit scanning systems to measure M², divergence, beam profile, beam position, Raleigh range, etc.

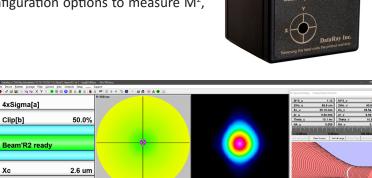
- BeamR'2 and WinCamD profiling cameras on linear stages move through the beamwaist to perform ISO 11146 compliant measurements
- BeamMap2 gives real-time M2 using a patented multi-planed scanning system.

ISO 11146 Compliant, Single Plane Measurement Systems on a Moving Stage

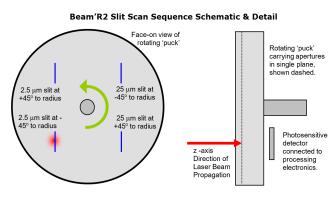
The ISO 11146 standard requires measurement of the second moment beam diameter in multiple planes (\geq 5) about the beamwaist and multiple planes (\geq 5) in the far field. In most circumstances this requires a single plane beam profiler moved along the propagation axis by a z stage.

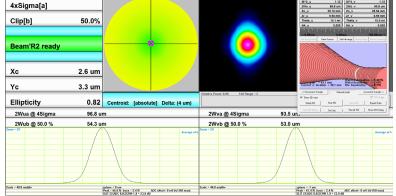
DataRay's modular based systems offers users the ultimate flexibility in M² measurement. A spreadsheet supports selection of the optimal M² measurement configuration: Camera based or slit scan based system, lens selection, 50 or 200 mm long translation stage: http://www.dataray.com/assets/xls/Lens_choice_for_M2_measurement2.xlsm

WinCamDTM cameras offers the most flexible imaging system & can measure a very wide range of M² on pulsed & CW beams. Wavelengths from 190 nm to 1350 nm, with sensor sizes to 11.3 x 11.3 mm, & pixel sizes down to 3.2 μ m.



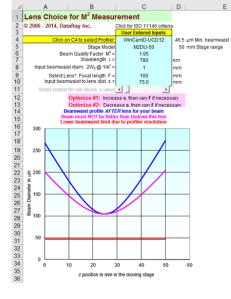
WinCamD-LCM4

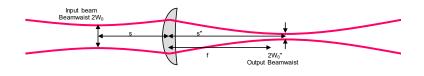



WinCamD-UCD12,15, 23, -UHR, -XHR

Beam'R2TM is a high resolution (0.1 μ m) single plane scanning system, with a wide range of wavelength options from 190 nm to 2.5 μ m and configuration options to measure M², divergence, Rayleigh range etc.

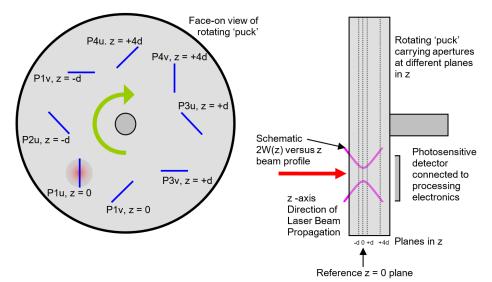
Beam'R2



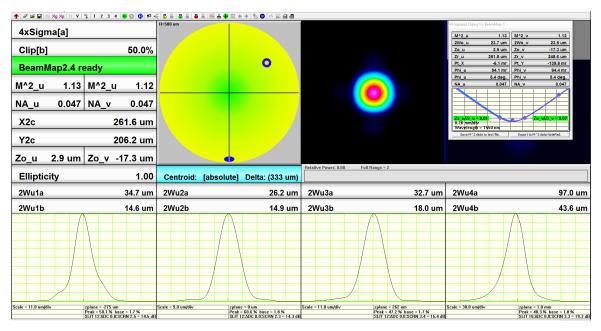


M2DU-50 and -200 Stages

- Resolution < 1 μm
- DataRay software controlled
- RoHS and CE compliant


Real-time M²

The **BeamMap2TM** is a high resolution (0.1 μ m) patented, multiple z plane XYZOO measurement system that gives realtime measurement of M², alignment, divergence, and beamwaist position and dimensions. BeamMap2 has two versions covers focused beams with slit plane separation **d** options of 50, 100, 250, 500 or 750 μ m. The ColliMateTM version covers close-to-collimated beams and has a plane spacing of 5 mm.


See the White Paper for more information on this unique system: <u>http://www.dataray.com/assets/pdf/DataRay_BM2_whitepaper.pdf</u>

BeamMap2 Principal of Operation

- A disk ['puck'] carrying multiple XY slit pairs rotates about an axis parallel to the z-axis, this satisfies the orthogonal linear scan requirements of the ISO 11146 standard.
- The slits are precisely calibrated in multiple planes separated in z in the focal region.
- Slits are placed at ±45° to the local radial direction. Effective slit width is 2x greater than actual slit width.

BeamMap2 schematic puck configuration

Screen image showing profiles in the 4 planes along with M2, divergence

M² Measuring Systems

355-1350	V	V				
Scanning Systems			Single Plane	Model	Multiplane Real-time M ²	Model ¹
190-800			V	BR2-Si	V	BMS2-Si-XXX
800-1800			V	BR2-IGA	V	BMS2-IGA-XXX
800-2500			V	BR2-IGA2.5	V	BMS2-IGA-2.5-XXX ¹

¹ Multiple model numbers are possible for the different slit/plane configurations. Please consult the factory or the selection spread available on our website: <u>http://www.dataray.com/assets/xls/DataRay_BeamMap2_Series_Choice.xls</u>

Ordering Information

Lens Selection

Model	Description		
LNZ-UV-Focal Length 190-380 nm	Focal lengths available- 50,75,100,150, 200,250,500 mm, diameters 25 or 50 mm, with mount and spacers		
LNZ-VIS-Focal Length 400-800 nm	Focal lengths available- 50,75,100,150, 200,250,500 mm, diameters 25 or 50 mm, with mount and spacers		
LNZ-NIR- Focal Length 650-1050 nm	Focal lengths available- 50,75,100,150, 200,250,500,750,1000 mm, diameters 25 or 50 mm, with mount and spacers		
LNZ-TEL- Focal Length 1050-1620 nm ¹	Focal lengths available- 50,75,100,150, 200,250,500,750,1000 mm, diameters 25 or 50 mm, with mount and spacers		

Camera/Scanning System

Mod	el	Description		
Cameras S-WCD-LCM4		Complete global CMOS beam profiling camera and accessories USB 3.0, 1" sensor, 5.5 μm pixels		
	S-WCD-UCD23	Complete global CCD series beam profiling camera and accessories USB 2.1, 2/3" sensor, 6.5 μ m pixels		
	S-WCD-UCD15	Complete global CCD series beam profiling camera and accessories USB 2.1, 1/1.8" sensor, 4.4 μm pixels		
	S-WCD-UCD12	Complete global CCD beam profiling camera and accessories USB 2.1, 1/2" sensor, 4.65 μm pixels		
	S-WCD-UHR	Complete CMOS beam profiling camera and accessories USB 2.1, 1/2" sensor, 5.2 μm pixels		
	S-WCD-XHR	Complete CMOS beam profiling camera and accessories USB 2.1, 1/2" sensor, 3.2 μm pixels		
Stages	M2DU-WCD-50	M ² linear stage, 2.5 μm step, 50 mm travel, for cameras		
	M2DU-WCD-200	M^2 linear stage, 2.5 μm step, 200 mm travel for cameras		
Slit Scanning System	S-BR2-	Beam'R2 scanning system- select Si, IGA, or IGA2300		
	S-BMS2	Complete BeamMap2 system- select Si, IGA, or Ext IGA2300 No stage required		
Stage	M2DU-BR2	Linear Stage for BR2 scanning systems		

Accessories

IC	Instrument case. Foam cells for custom configuration		
ND Filters	Full range of ND filters including our new MagND filters for quick change 0.5, 1.0, 2.0, 3.0, 4.0, 5.0		

